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In equilibrium, the following tasks will be determined: 

1. Torque as a function of the distance between the origin of the coordinates 

and the point of action of the force. 

2. Torque as a function of the angle between the force and the position 

vector to the point of action of the force. 

3. Torque as a function of the force. 
 
 

 
At the end of this practical the students are able to: 

1. Define torque as a combination of a physical quantity and a distance. 

2. Explain torque is the product of the force multiplied by the perpendicular 

distance from the line of action of the force to the pivot or point where 

the object will turn. 

 
 

 
 

Coplanar forces (weight, spring balance) act on the moments disc on either 

side of the pivot. In equilibrium, the moments are determined as a function of 

the magnitude and direction of the forces and of the reference point. 

1. OBJECTIVES 
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m = 0.1 kg 

r2= 0.12 m 

𝛼 = 𝜋/2. 

 

 

 
 

The equilibrium conditions for a rigid body, on which forces 

are: 

𝑓⃗→
𝑖   act at points  𝑟⃗→𝑖, 

𝐹→ = ∑ ⃗𝑓→
𝑖    = 0 

 

 

and 𝑇⃗⃗⃗→ = ∑ 𝑟⃗→𝑖  × 𝑓⃗→ = 0,  where  𝑇⃗→ is the moment, or torque. 
 
 

The origin of the coordinates, with reference to which the moments are defined, 

can be selected free in the equilibrium state. 

 
In the present case, one obtains: 

𝑟⃗⃗1→  × 𝑓⃗⃗⃗1
→  = 𝑟⃗⃗⃗2→  × 𝑓⃗⃗⃗2

→ 

 
 

And for the magnitudes: 

𝑇 = 𝑟1𝑓1 = 𝑟2𝑓2 sin 𝛼 (see Fig.1) 
 

 

 

 
Fig. 1.1: Compensating moments Fig. 1.2: Moment as a function 

of the distance between the origin of the 

coordinates and the point of action of the 

force. 

4. THEORY AND EVALUATION 
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Fig. 1.3: Moment as a function of the 

angle between force and position vector 

to the point of action of the force. 

Fig. 1.4: Moment as a function of 
the force. 

 
 
 
 

 
 

 Moments disk 

 Spring Balance 1 N 

 Tripod base 

 Barrel base 

 Right angle clamp 

 Support rod, square, l = 400 mm 

 Swivel clamp 

 Bolt with pin 

 Weight holder f. slotted weights 

 Slotted weight, 10 g, black, 50 g, black 

 Fish line, l = 100 m and 

 Ruler, plastic, l = 200 mm 

5. APPARATUS/EQUIPMENT 

 
r2= 0.06 m 

r1 = 0.09 m 

f1= m · g 

𝛼 =  𝜋/2. 

r1= r2= 0.06 m 

f2= 1 N. 
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The experimental set-up is arranged as shown in Fig. 1.5. The spring 

balance is adjusted to zero in the position in which the measurement is to 

be made in each case. 

 

The straight line from the push-in button to the pivot point is adjusted to 

the horizontal by moving the swivel clamp on the stand rod. The fishing 

line to weight pan then runs along a row of holes. 

 

The spring balance should be mounted in the swivel clamp so that it forms 

an angle with the fishing line. 

 

For tasks 1 and 3, the spring balance is attached on one side of the pivot 

point of the moments disc and the weight pan on the other side. The force 

needed to adjust the line through the push-buttons and the pivot to the 

horizontal is read on the spring balance. (Spring balance vertical). 

 
For task 2, the weight pan should be replaced by the second spring 

balance. A fixed force, e.g. 1 N, is set on it while the angle between the 

line from push-button to pivot and the spring balance is varied. On the 

other, vertical, spring balance, the force needed to bring the push-button- 

pivot line horizontal is read. More conveniently, the angle and the fixed 

force are first adjusted on the clamped spring balance while the disc is 

released and the moment is compensated on the other spring balance. 

Fig. 1.5: Experimental set-up for investigating moments in equilibrium 

6. PROCEDURES 
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Task 1 

Constant: m1 100 g, r2 = 12 cm 

 
 
 
 
 
 

 

(b) Plot graph 2 versus r1 

Task 2 

Constant: F2 = 1 N, r1 = r2 = 6 cm 
 

Angle,  Sin  F1 (N) 

 
1 

1 = F1 x r1 
10    

20    

30    

40    

(b) Plot graph 1 versus sin 

Task 3 

a) Constant r1 = 9, r2 = 6 cm 
 

m1 (g) F2 (N) 


2 (Nm) 
2 = F2 x r2 

10   

20   

30   

40   

50   

 

(b) Plot graph 2  versus m1 

7. DATA 

r1 (cm) F (N) 


2  (Nm) 
2 = F2 x r2 

3   

5   

7   

9   
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8. Data Analysis 

 
9. Discussion 

i) What is torque? 

ii) What do you understand from this experiment? 

 
10. Conclusion 

 
11. References 



UniSZA SCIENCE AND MEDICINE FOUNDATION CENTRE 7 

 

 

(1) TORQUE 

PRACTICAL 2 

NEWTON’S 2ND LAW / AIR TRACK 

2. LEARNING OUTCOME 

3. THEORY 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 To determine the distance travelled as a function of time. 

 To determine the velocity as a function of time. 

 To determine the acceleration as a function of the accelerated mass. 

 To determine the acceleration as a function of force. 
 
 
 

 
 

At the end of this practical the students are able to: 
 

1. Verify Newton’s Second Law, F = ma 

2. Analyze situations in which an object moves with specified 

acceleration under the influence of one or more forces. 

3. Understand forces that makes up the net force, such as motion 

up or down with constant acceleration. 

 

 

 
Newton’s equation of motion for a mass point of mass m to which a force is 

applied is given by the following: 

 

m.a  F 

where a 


d 2r 

dt 2 

 

 
is the acceleration 

1. OBJECTIVES 



 

 

(1) TORQUE 
 

 
 

The velocity v obtained by application of a constant force is given as a function 

of the time t by the expression 

v(t)  
F 

. t 
m 

 

For v 0  0 

Assuming that v 0  0; r 0  0 

 
The position of F of the mass point is 

 

 

r (t)  
1
 

2 

F 
. . t 2 
m 

(2.1) 

 

In the present case the motion is one dimensional and the force produce by a 

weight of m1 is 
 
 

(2.2) 

 
Where g is the acceleration of gravity. If the total mass of total the glider is m2, 

the equation of motion is given by 

 

m1  m2 . (2.3) 
 

 

The velocity is  
v (t)  v  







m1.g 

 

. t 

 

 
(2.4)  

m  m 



 1 2 

























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F  m1. g  m1g 

a  m1 g 
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Fig. 2.1: The distance travelled s plotted as a function of the time t;m 1 = 10 

m2 = 201 g 

 
 

In Fig. 2.2, the distance travelled is illustrated as a function of t2 for the same 

measured values. A linear correlation results, as was expected from the 

theory. The slope is 0.246 m/s2 and the following is thus obtained from 

Equation (2.1): 

 
F = 2. (m1 + m2) 0.246 ms-2 = 0.104 N (2.5) 
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Fig 2.2: The same measurement as in Fig. 2.1 plotted against t2. 

 

As a good approximation, this corresponds to the weight force of the mass m1 

(0.010 kg); F = m1g = 0.0981 N. 
 
 

Under the same experimental conditions, the correlation v(t) presented in Fig. 

2.3 is obtained by measuring the shading time of the four light barriers due to 

the screen, which has a length of 10 cm. The slope of the compensation line 

drawn through the origin correspond to the acceleration a in this case. For the 

presented sample measurement, a = 0.473 ms-2. We expect a to be equal to 

 
 

 

a   
m1.g 

m1  m2 

 0.465 ms-2 (2.6) 
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The value agrees with the acceleration determined using Fig. 2.3 very well. 
 
 
 

 

Fig. 2.3: The velocity v plotted as a function of the time t; m1 = 10 g, m2 = 201 g. 
 
 

 
In the same manner as shown in the example in Fig. 2.3, the 

accelerations are measured in two measuring series as a function of the inert 

mass m1 + m2 (F = constant) and as a function of the force (m1 + m2 = constant). 

In the process, one can make the evaluation work much easier by using a 

computer with a spreadsheet program (e.g. Microsoft Excel®). 

 

Fig. 2.4 shows the acceleration due to the mass m1= 10 g as a function 

of the inert mass. If the acceleration is plotted against the reciprocal of the 

inert mass using the same measured values, a linear correlation results, as 

expected (Fig. 2.5). The slope of the straight lines should be equal to the 

accelerating force, m1g = 0.981 N. The evaluation of the present example in 

Fig. 2.6 results in a slope of 0.999 kg·m·s2 = 0.999 N. 
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Fig. 2.4: The acceleration a as a function of the inert mass m1 + m2 

measured at constant acceleration (weight) force due to the mass m1 = 10 

g. 

 
 
 

 
 
 

Fig. 2.5: The same measurement as in Fig. 2.4 plotted against the 

reciprocal inert mass. 
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In conclusion, Fig. 2.6 shows the dependence of the acceleration on 

the accelerating force F. One sees the linear proportionality between the two 

parameters. The reciprocal slope is 0.213 kg and corresponds well to the inert 

mass m1+ m2 = 0.217 kg. 

 

Fig. 2.6: The acceleration a as a function of the force F for constant inert 

mass m1 + m2 = 217 g. 

 

 Air track rail 

 Blower, Pressure tube, l = 1.5 m 

 Glider f. air track 

 Screen with plug, l = 100 mm 

 Hook with plug, Starter system 

 Magnet w. plug f. starter system 

 Precision pulley, Stop, adjustable, Fork with plug 

 Endholder for air track rail 

 Light barrier, compact, Timer 4-4 

 Slotted weight, black 10 g, 50 g, 

 Weight holder 1 g, Silk thread, 200 m 

 Slotted weight, 1 g, natur.colour 

 Right angle clamp, Portable balance, CS2000 

 Barrel base, Support rod, square, l = 400 mm 

 Connecting cord, l = 1000 mm, red, yellow and blue. 

 Connecting cord, l = 2000 mm, yellow and black. 

4. APPARATUS/EQUIPMENT 
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The experimental set-up is shown in Fig. 2.7. The starting device is mounted 

in such a manner that the triggering unit releases the glider without giving it an 

initial impulse when triggered. 

It is connected with the two “Start” jacks on the timer; when connecting it, 

ensure that the polarity is correct. The red jack on the starting device is 

connected with the yellow jack of the timer. 

The four light barriers are connected in sequence from left to right with the 

control input jacks “1” to “4” on the timer. Connect jacks having the same 

colour when doing so. 

 

 
Fig. 2.7: Experimental set-up for investigation of uniformly 

accelerated motion. 

 
The mass of the glider can be altered by adding slotted weights. Always place 

weights having the same mass on the glider’s weight-bearing pins, as optimum 

gliding properties are provided only with symmetrically loading. 

 
The accelerating force acting on the glider can be varied by changing the 

number of weights (on the weight holder) acting via the silk thread and the 

precision pulley. 

 

Determine the mass of the glider without the supplementary slotted weights 

by weighing it. Position the four light barriers in a manner such that they divide 

the measuring distance into approximately equal segments. 

5. PROCEDURES 
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Place the last light barrier such that the glider with screen passes through it 

before the accelerating weight touches the floor. Position the adjustable stop 

with the fork and plug on the track in such a manner that the glider is gently 

braked by the rubber band just before the accelerating weight touches the 

floor. 

 

Measure the distances travelled s1…s4 between the front edge of the screen 

from the starting position to the respective light barriers exactly for the 

evaluation. Perform all subsequent measurements without changing the light 

barriers’ positions. 

 

After measuring the times t1…t4 required for the four distances travelled s1…s4 

with the timer in the “s(t)” operating mode (see operating instructions), 

determine the corresponding velocities with the “v(t)” operating mode. While 

doing so, the shading times ∆t1… ∆t4 of the four light barriers are measured; 

from them the mean values of the velocity for the corresponding distance 

travelled are determined with reference to the screen’s length. 

 
These mean velocities correspond to the instantaneous velocities represented 

by the times t’1…t’4 in accordance with the following: 

 
 

t '  t  
tn  

(2.7) 
n n 

2
 

 

 

 
( 
2 

. 
6 
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6. DATA 

 
 
 

To determine the acceleration as a function of the mass, increase the mass of 

the glider progressively by 20 g increments (10 g on each side), and measure 

the instantaneous velocity at a predetermined position. 

 
In determining the acceleration as a function of force, the total mass remains 

constant. Successively transfer 2 g (1 g from each side) from the glider to the 

weight holder and measure the instantaneous velocity at a fixed position. The 

accelerated mass must not exceed 20 g. Before beginning with the 

measurements, it is advisable to check the track’s adjustment. 

 
 

i) To determine the distance travelled as a function of time. 
 
 

Light Barrier Distance, s (m) Time, t (s) 

m1 ( g) m2 ( g) 

S1    

S2    

S3    

S4    

 

a) Plot graph distance versus time for m1 

b) Plot graph distance versus time for m2 
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ii) To determine the velocity as a function of time. 
 
 

Light 
Barrier 

Distance 
s (m) 

Time, t (s) Velocity, v (ms-1) 

m1 ( g) m2 ( g) m1 ( g) m2 ( g) 

S1 
     

S2 
     

S3      

S4      

 
a) Plot graph velocity versus time for m1 

b) Plot graph velocity versus time for m2 

 
iii) To determine the acceleration as a function of the accelerated 

mass. 
 
 

 
 
 

Light 
Barrier 

 
Time, t (s) 

Velocity, v 
(ms-1) 

Acceleration, a 
(ms-2) 

 
Average 

acceleration, 
aav (ms-2) m1 (g) 

= 
m2 (g) 
= 

m1 (g) 
= 

m2 (g) 
= 

m1 (g) 
= 

m2 (g) 
= 

S1        

S2        

S3        

S4        

 
a) Plot graph acceleration versus mass 

 
iv) To determine the acceleration as a function of force. 

 
Mass 1 = kg 

 

Light Barrier Time, t (s) 
Velocity, v 

(ms-1) 
Acceleration, a 

(ms-2) 
Force, F (N) 
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Mass 2 = kg 
 

Light Barrier Time, t (s) 
Velocity, v 

(ms-1) 
Acceleration, a 

(ms-2) 
Force, F (N) 

     

     

     

     

 

Mass 3 = kg 
 

 

Light Barrier 
 

Time, t (s) 
Velocity, v 

(ms-1) 
Acceleration, a 

(ms-2) 

 

Force, F (N) 

     

     

     

     

 
a) Plot graph acceleration versus force for m1 

b) Plot graph acceleration versus force for m2 

c) Plot graph acceleration versus force for m3 

 
 
 

7. Data Analysis 
 

8. Discussion 
 

9. Conclusion 

 
10. References 
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(2) TORQUE 

PRACTICAL 3 

HOOKE’S LAW 

2. LEARNING OUTCOME 

3. INTRODUCTION 

4. THEORY & EVALUATION 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 Determining the spring constant of helical. 

 Study the elongation of a rubber band. 
 

 

 
At the end of this practical the students are able to: 

 

1. Define the Hooke’s law and elasticity. 

2. Use Hooke’s law to find the spring constant of given spring. 

3. Explain the relationship of force, mass and elongation. 
 

 

 

The validity of Hooke's law is determined for two helical springs with 

different spring constants. The elongation of the helical spring, which depends 

on the deforming force, is studied by means of the weights of masses. For 

comparison, a rubber band, for which no proportionality exists between the 

exerted force and the resulting elongation, is submitted to the same forces. 

 
 

When forces act on a solid body, the resulting deformation (translation 

and rotation movements are suppressed in the following) depends to a large 

extent on the material as well as on the size and on the direction along which 

the exterior forces act. When the solid body regains its original shape after the 

exterior force stops acting, that is, the interior restoring forces of the material 

can bring the solid body back to its original equilibrium position, the material is 

called elastic. 

1. OBJECTIVES 
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(2) TORQUE 
 

 

A helical spring is a very simple example of an elastic body (Fig. 3.1). In 

addition, if deviations ∆l from the equilibrium position l0 of the helical spring are 

not very large, the restoring force FR of the spring is found to be proportional to 

its elongation (or to its compression) ∆l: 

 
 

(3.1) 
 
 
 

Fig. 3.1: Measurement of the elongation of the helical spring. 

 

 
This is Hooke’s law or the linear law of forces, w here the proportionality 

constant D, which is a general magnitude of reference, is called the spring 

constant in the case of a helical spring. If an exterior force acts on the spring, 

such as the weight FW = m·g of a mass m (g = 9.81 m/s2: acceleration of 

terrestrial gravity) in this experiment, a new stable equilibrium is reached for the 

length of the spring l1, for which the weight mass m is equal to the restoring force 

of the spring: 

Fr  Dl  mg  Fw (3.2) 

(3) HOOKE’S LAW 
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The elongation of the helical spring is therefore proportional to the forces FW 

exerted by the weights: 
 

l  
1 

F 
 

D  
W 

(3.3) 
 

 

as is also shown by the characteristic curves of the two helical springs (Figs. 

3.2 and 3.3). The slope of the characteristic curves is the respective spring 

constant D of the helical springs. Measurement values from Fig. 3.2 yield a 

spring constant of D = 3.03 N/m, measurement values from Fig. 3.3 yield a 

spring constant of D = 19.2 N/m. 

Thus, forces required to cause a given elongation of the spring increase 

proportionally with the spring constant. Using equation (3.3), the new equilibrium 

length l1 is found to be: 

 
l1  lo  

mg 

D 

 
(3.4) 

 
 
 

 
 

Fig. 3.2: Weight Fw of a mass m which acts on the helical spring, plotted as a 

function of elongation ∆l for a helical spring with constant D = 3 N/m. 
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Fig. 3.3: Weight Fw of a mass m 

which acts on the helical spring, 

plotted as a function of 

elongation ∆l for a helical spring 

with constant D = 20 N/ 

 

Proportionality between the restoring forces, as long as they are small, and the 

elongation of the solid body are ascertained not only for the helical spring, but 

also for all other materials which are in a state of stable equilibrium: the potential 

energy of forces between molecules is approximately parabolic around a stable 

point of equilibrium. Restoring forces obtained by differentiating the potential are 

thus proportional to the deviation from the rest position. Taking for example a rod 

or wire of a given material of length l and cross section A, to which a traction 

force F is applied, Hooke's law is expressed through: 

 

 

l 
  

F 

l A 

 
or e  e 

 
(3.5) 

 

 

where   
l 

l 

 

is the relative elongation of the rod, the proportionality factor 𝛼 is 

the coefficient of elasticity of the rod material and 𝜎 = F/A is the tension of the rod. 

Proportionality only holds up to a characteristic limit stress. A schematic stress - 

elongation diagram for a metal wire is shown in Fig. 3.4. The limit of proportionality 

(𝜎P) generally lies below the elastic limit (𝜎E), above which the form of the solid 

body changes permanently, due to interior molecular re-arrangements. In this 

range of stresses, the material is said to be plastic. If the deforming forces 

exceed the limit of solidity (𝜎B), the solid material begins to flow and the body 

breaks. An example of a material which does not follow Hooke's law, even 
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when submitted to small forces, is a rubber band. Fig. 3.5 shows the characteristic 

curve of a rubber band, with continuously increasing stress between point O and 

point A and with gradual relief between point A and point B. On the one 

hand, the relation between acting weight Fw and resulting elongation ∆ is no 

longer linear: elongation is larger than expected according to Hooke's law, 

considering the measurement values for small stresses (dotted line).On the other 

hand, the degree of elongation depends on the previous history of the rubber 

band. In the characteristic curve of the rubber band, part OA (gradual increase of 

stress) does not coincide with part AB (gradual relief of stress), which is contrary 

to what is observed for the helical spring, as long as it remains within the limit of 

elasticity. This phenomenon is called elastic hysteresis. If the same rubber band 

is stressed again, elongation ∆ will now be significantly larger than had been the 

case for the new rubber band. The hysteresis of the characteristic curve has two 

causes: on one hand, only part of the deformation reverts back to the original form 

momentarily, whereas the rest of the deformation reverts back over a period of 

several hours. This reversible process is called elastic after-effect, the material 

reacts visco elastically. On the other hand, once the elastic limit is exceeded, 

interior re-arrangements take place within the material, which results in permanent 

changes of shape. This process is irreversible, because work is converted to heat. 

 

Fig. 3.4: Stress-elongation 

diagram (schematic). Fig. 3.5: Acting weight Fw as a function of 

the extension ∆𝑙 for a rubber band (elastic 

hysteresis). 
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6. PROCEDURES 

 

 
 

 Tripod base 

 Barrel base 

 Support rod, square, l = 1000 mm 

 Right angle clamp, Cursors, 1 pair 

 Weight holder f. slotted weights 

 Slotted weight, 10 g black and 10 g silver bronze 

 Slotted weight, 50 g black and 50 g silver bronze 

 Helical springs, 3 N/m, 20 N/m 

 Silk thread, 200 m 

 Meter scale, demo, l = 1000 mm 

 Holding pin 

 Square section rubber strip, l = 10 m 
 
 
 

The experimental set-up to measure the spring constants is shown in Fig. 

3.6. To start with, the helical spring is submitted to no stress; the sliding 

pointer is set to the lower end of the spring and its corresponding position 

x0 on the measuring scale is recorded. The load on the helical spring is then 

increased in steps of 10 g, using the weight holder and the slotted weights, 

until a maximum load of 200 g is reached. 

 
Noting the equilibrium (stabilised) position of the lower end of the helical 

spring x1, the corresponding increase ∆l = |1 − 0| of the spring is assessed. 

Weight FW, which causes elongation, is plotted as a function of elongation 

∆l. The elasticity of the helical spring is controlled by repeating the 

determination of ∆l for some weights and by comparing the results to those 

obtained during the first measurement. This procedure is repeated for both 

helical springs (D = 3 N/m and 20 N/m). 

 
To determine the characteristic curve of the rubber band, a piece of band 

of about 50 cm length is cut off. Both ends of the rubber band are tied to 

small loops with silk thread. One loop is slipped onto the holding bolt (cf. 

Fig. 3.7) and the weight holder is suspended from the other loop. 

5. APPARATUS/EQUIPMENT 
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In the same way as for the helical springs, forces (weights) are increased in 

steps of 10 g up to a maximum of 200 g. The momentary elongation of the 

rubber band must be maintained by hand during the exchange of weights, 

because the elongation depends on the previous history of the material (cf. 

theory). Subsequently, weight is decreased in 10 g steps by removing 

slotted weights. The equilibrium position x0 of the rubber band without 

slotted weights is calculated approximately through application of Hooke's 

law to equilibrium positions x1 (10 g) and x1 (20 g): 

 
x0 = x1 (10 g) – [x1 (20 g) - x1 (10 g)] (3.6) 

 
 

Weight FW, which causes elongation, is plotted as a function of elongation, 

∆ ʅ = |1 − 0|. 
 
 

 

 
 

Fig. 3.6: Experimental set-up: Fig. 3.7: Fixing the rubber band to the holding 

Hooke’s Law bol 
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a) Small diameter spring 
 
 

Mass (kg) Initial length, x0 (m) Final length, xf (m) Elongation, x 

    

    

    

    

 
 

b) Plot Force against Elongation 
a) Large diameter spring 

 
 

Mass (kg) Initial length, x0 (m) Final length, xf (m) Elongation, x 

    

    

    

    

 
 

b) Plot Force against Elongation 

 
i. a) Rubber Band 

 
 

Mass (kg) Initial length, x0 (m) Final length, xf (m) Elongation, x 

    

    

    

    

 
b) Plot Force against Elongation 

7. DATA 
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8. Data Analysis 

 
9. Discussion 

 
10. Conclusion 

 
11. References 
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(4) INTERFERENCE OF LIGHT 
PRACTICAL 4 

INTERFERENCE OF LIGHT 

2. LEARNING OUTCOME 

3. APPARATUS/ EQUIPMENTS 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 To understand how and why interference of light occurs 

 To understand how constructive and destructive interference are related to 

the path length difference. 

 To determine the wavelength of light by interference. 
 

 

 
At the end of this practical the students are able to: 

1. Explain the phenomena of interference a combination of a physical quantity 

and a distance. 

2. Define constructive interference and destructive interference for a double 

slit. 

3. Determine the wavelength of light by interference. 
 
 

 
 

POSITION MATERIAL QUANTITY 

1 Fresnel biprism 1 

2 Prism table with holder 1 

3 Fresnel mirror 1 
4 Lens, mounted, f = +20 mm 1 

5 Lens, mounted, f = +300 mm, achrom. 1 

6 Lens holder 2 

7 Swinging arm 1 
8 Slide mount f. opt. pr.-bench, h = 30 mm 2 
9 Slide mount f. opt. pr.-bench, h = 80 mm 2 

10 Optical profile-bench, l = 1000 mm 1 

11 Base f. opt. profile-bench, adjust. 2 
12 Laser, He-Ne 1.0 mW, 220 V AC 1 
13 Measuring tape, h = 2 m 1 

1. OBJECTIVES 
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B 

b 
(Betw een 3m – 5m) 

f1 f2 

2 

23.3 cm a a 

43.2 cm 

 
 
 

 

 
 

TASK A: Determination of wavelength by Fresnel mirror 
 
 

 
(12) (4) + (6) (3) + (7) (5) + (6) 

 
Screen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Set up experiment as figure above. 

2. Adjust f2, until clear image produce on screen (one-point). 

3. Adjust the movable part of Fresnel mirror until both halves of the 

mirror is approximately parallel. 

4. Align the mirror surface parallel to the optical bench. 

5. Ensure beam of rays from laser is adjusted as to beam strikes both 

of the mirror equally. Two light spots now visible on the screen. 

6. Measure a, b, and B where a = Distance between mirror and screen, b 

= distance between lens and screen and B = distance between two- 

point image. 

7. Adjust screws of the Fresnel mirror to tilt the mirror until these two 

light spots overlap. 

8. Remove f2, interference pattern is observed. Measure distance 

between   n 

interference bands, p Measure p = Distance between neighbouring 

maxima. 
 

       

p 
16. Determine the wavelength of the light, λ 

4. PROCEDURES 
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For maxima 

 
where 

a = distance between mirror and screen 

b = distance between lens and screen 

B = distance between two-point image 

 
 
 

And 

 
 
 
 

p = distance between maxima 

d = distance between two virtual light source 

λ = Wavelength of light 
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  (12)  
(4) + (5) + Screen 

b 
Distant 
screen 

(3m - 5m) 

B 

2.0 cm f 
23.3 cm 

f2 

a = Distant biprism to screen 

45.0 cm 

60.0 cm 

 
Screen 

(1) + 

 

 

Result: 
 

Mirror and 

Screen, 

a (mm) 

Lens, f2 and 
Screen, 
b (mm) 

Two point 
image on 

screen 
B (mm) 

Neighbouring 
Maxima, 

p (mm) 

Two virtual 
Light, 

d (mm) 

 
Wavelength 
λ (nm) 

      

 
 

TASK B: Determination of wavelength by Fresnel biprism 
 

1. Remove Fresnel mirror set up and place the Fresnel biprism. 

2. Ensure that the widened beam strikes the central edge of the biprism. 

3. Adjust biprism until clear image (two point) form on the screen. 

4.  Measure the distance between the two points of lights, B and distance between 

forming lens, f2 and the screen, b 

5. Remove f2, interference pattern is observed. Measure distance between n 

interference bands, p 

 
       

p 
6. Measure distance between the screen and biprism, a. 

7. Determine the wavelength of the light, λ 
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For maxima 

 

 

 
And 

 
 

where, 

 

a Distance between screen and biprism 

b distance between lens, f2 and screen 

B distance between two-point image 

p distance between neighbouring maxim 

 
d distance between two virtual light 

 

λ Wavelength of light 

 
 
 

Distance 
between 
two point 
image, 
B (mm) 

Distance between  

Wavelength, λ 

(nm) 

Lens, f2 

and 
screen, 

b 

Screen and 

biprism, 

a (mm) 

Neighbouring 
Maxima, 
p (mm) 

Two virtual 
Light, 
d (mm) 

      

 
 

ATTENTION 

1. BEWARE: Never look directly into non attenuated laser beam. 

2. Before performing experiment, it is recommended to clean the 

lenses, m i r r o r and biprism with ethanol and wipe dry and clean 

cloth. 

3. While performing experiment, do not touch the lenses, mirror and 

biprism with bare hands to prevent from fingerprints marked on the 

lenses. 

4. Slowly adjust the screws of Fresnel mirror to tilt the mirror. Do not 

force the screw when limit is achieved 

5. After use, keep all the lenses, mirror and biprism in dry and non- 

dusty place. Wrap lenses with tissue or paper is recommended. 

6. Do not drop the lenses, mirror and biprism. 

7. Optical experiment needs to perform under dark and clean room. 

Any dust on the lenses may contribute to failure in experiment. 

 
12. Data Analysis 

 
13. Discussion 

 
14. Conclusion 
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15. References 

PRACTICAL 5 

ARCHIMEDES PRINCIPLE 

2. LEARNING OUTCOME 

3. INTRODUCTION 

4.  THEORY AND EVALUATION 

 
 
 
 
 
 
 
 
 
 
 

 

 
To investigate the buoyant force acting on a variety of objects, the density of 

the objects, and the density of our tap water. 

 
 

 
At the end of this practical the students are able to: 

1. Explain the Investigate the buoyant force acting on a variety of objects. 

2. Calculate the density of the objects. 
 

 

Archimedes’ principle states that a body wholly or partially submerged in a 

fluid is buoyed up by a force equal in magnitude to the weight of the fluid 

displaced by the body. It is the buoyant force that keeps ships afloat (object 

partially submerged in liquid) and hot air balloons aloft (object wholly 

submerged in gas). We will investigate the buoyant force using the 

following methods: 

• Direct Measurement of Mass 

• Displacement Method 
 

 

When an object is submerged in water, its weight decreases by an amount 

equal to the buoyant force. The direct measurement of mass will measure 

the weight of an object first in air, then while it is submerged in water. The 

buoyant force, FB, is equal to the weight in air (Fg) minus the weight in water, 

1. OBJECTIVES 
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F′ g = m′ g: 

FB = Fg − F′g (5.1) 

 
The displacement method requires measurement of the volume of fluid 

displaced by the object. The weight of the fluid displaced is equal to the 

buoyant force exerted on the object. Thus, the buoyant force is given by: 

 

FB = ρgV (5.2) 

 
 

where ρ (Greek letter, rho) is the density of the fluid displaced, V is the 

volume of fluid displaced by the object, and g is the acceleration due to 

gravity. 

 
The following exercises will be informative, as both floating and sinking 

objects are used in this experiment. 

 

• Sketch a free-body diagram for an object that is floating in water. How 

much water does it displace? Does it displace its volume in water? Does it 

displace its weight in water? 

 

• Sketch a free-body diagram for an object that is submerged in water. How 

much water does it displace? Does it displace its volume in water? Does it 

displace its weight in water? The accepted value for the density of pure water 

at 4◦C and 1 atm is ρwater = (1000 ± 1) kg/m3 . 

 
We will use this value for the density of water for Part 2 through Part 5. That 

is, we assume a temperature in the lab of 4◦C. We will then experimentally 

determine the density of the tap water we used (Part 6) and compare it to 

the density of water at 20◦C. The density of pure water at 20◦C is: 

 
ρwater = (998.21 ± 0.01) kg/m3 (5.3) 
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6. PROCEDURES 

 
 
 
 

 
 

Triple-Beam Balance with string 

Graduated Cylinder 

Pipette 

Cylinders: (2) Metal, (1) Wood (Note: The cylinders have sharp hooks) 

Overflow Container 

Spouted Can 

Digital Balance 

(2) 123-Blocks Wood Board/Block Rod & Clamp 

Paper Towels 

Water 
 
 

 

 
PART 1: Overflow Method 

1. Measure the mass of the brass cylinder. Determine its weight, Fg. 

2. Place the overflow container on the digital balance. 

3. Fill the spouted can with water. Position it so that its spigot pours into the 

overflow container. 

4. Submerge the brass cylinder in the water, allowing displaced water to 

collect in the overflow container. 

5. Measure the mass of the displaced water; calculate its weight. This is the 

buoyant force, FB. 

6. Calculate ρobj (density of the object): 

  
wFg 

 

 
(5.4) 

obj 

B 

5. APPARATUS/EQUIPMENT 

F 
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PART 2: Direct Measurement - Mass 

1. Calibrate the triple beam balance. 

2. Suspend the object (brass cylinder) from a string attached to the balance. 

3. Partially fill the overflow container with water, then submerge the object. Do 

not allow the object to touch the container. Measure the apparent mass of the 

object in water, m ′. Calculate F′g. 

4. Determine FB for the object. How much less does it weigh in water than in 

air? (Eq. 5.1) 

5. Calculate ρobj using Eq. 5.4. 

 
 

PART 3: Displacement Method - Volume 

6. Partially fill the graduated cylinder with water; take note of the water level. 

Use the pipette to fine-tune the meniscus. 

7. Carefully submerge the object in water and determine its volume. 

8. Remove and dry the object, then empty the graduated cylinder and invert 

it on a paper towel to dry. 

9. Determine FB on the object with Eq. 5.2. 

10. Calculate ρobj using Eq. 5.5: 

  
m

 
 

 
(5.5) 

obj 
V

 
 

Use the volume determined from the displacement method and m, not m′. 

 
 

PART 4: Aluminum Cylinder 

1. Repeat Part 1 through Part 3 for the next object (aluminum cylinder). 

2. Draw a free-body diagram for this object submerged in water. 

 

PART 5: Buoyant Force - Floating Object 

1. Although you need to modify or omit certain steps, repeat Part 1 through 

Part 3 for the wood cylinder: 

• Omit Step 6, Step 11, and Step 16. 

• Modify Step 9 and Step 13: Allow the wood object to float. 

2. Draw a free-body-diagram for the wood object floating in water. 
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PART 6: Density of Tap Water 

For each metal object: Use Eq. 5.6 and the graduated cylinder volume from 

Part 3 to determine the density of our tap water. 

m  m' 
 w 

V 
(5.6) 

 

8. Data 

 
9. Data Analysis 

 
10. Discussion 

 
11. Conclusion 

 
12. References 


